Analisis Komparatif Jalur Hidrometalurgi dan Pirometalurgi dalam Ekstraksi Bijih Nikel Laterit untuk Bahan Baku Baterai Kendaraan Listrik
Kata Kunci:
Nikel Laterit, Hidrometalurgi, Pirometalurgi, High-Pressure Acid Leaching, Baterai Kendaraan ListrikAbstrak
Peningkatan pesat kebutuhan nikel sebagai bahan baku baterai kendaraan listrik mendorong perlunya evaluasi kritis terhadap teknologi pengolahan bijih nikel laterit. Artikel tinjauan ini menyajikan sintesis komprehensif jalur hidrometalurgi dan pirometalurgi dalam ekstraksi nikel laterit dengan fokus pada kesesuaian terhadap spesifikasi material baterai. Analisis dilakukan dengan mempertimbangkan karakteristik bijih, efisiensi pemulihan logam, konsumsi energi, serta dampak lingkungan berdasarkan literatur terkini. Hasil kajian menunjukkan bahwa jalur hidrometalurgi, khususnya high-pressure acid leaching, saat ini merupakan pendekatan paling kompatibel untuk produksi material baterai karena kemampuannya menghasilkan nikel dan kobalt dengan tingkat kemurnian tinggi. Sebaliknya, jalur pirometalurgi tetap relevan untuk pengolahan bijih saprolit berkadar nikel tinggi, namun menghadapi keterbatasan berupa konsumsi energi yang besar dan jejak karbon yang signifikan apabila diterapkan secara konvensional. Jurnal ini menegaskan bahwa pendekatan terpadu yang mengombinasikan prapengolahan pirometalurgi dengan pemurnian hidrometalurgi berpotensi menjadi strategi yang paling rasional dan berkelanjutan dalam mendukung rantai pasok bahan baku baterai kendaraan listrik berbasis nikel laterit.
Unduhan
Referensi
Abbas, M., Shu-Heng, C., & Long-gong, X. (2025). Sulfidation of Saprolite Nickel Laterite Ore with Sodium Sulfate as Sulfur Resource. Mining, Metallurgy & Exploration, 42(4), 2635–2650. https://doi.org/10.1007/s42461-024-01120-0
Abdelbaky, M., Schwich, L., Crenna, E., Peeters, J. R., Hischier, R., Friedrich, B., & Dewulf, W. (2021). Comparing the environmental performance of industrial recycling routes for lithium nickel-cobalt-manganese oxide 111 vehicle batteries. Procedia CIRP, 98, 97–102. https://doi.org/10.1016/j.procir.2021.01.012
Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., Prastyo, E., & Herlina, U. (2022). Development of laterite ore processing and its applications. Indonesian Mining Journal, 25(2), 89–104. https://doi.org/10.30556/imj.vol25.no2.2022.1261
Cathelineau, M., Boiron, M.-C., Grimaud, J.-L., Favier, S., Teitler, Y., & Golfier, F. (2023). Pseudo-Karst Silicification Related to Late Ni Reworking in New Caledonia. Minerals, 13(4), 518. https://doi.org/10.3390/min13040518
Cheng, Y., Wang, Y., Gu, K., & Han, J. (2025). Green Utilization Strategy of Nickel–Iron Alloy: Selective Extraction of Nickel and Direct Preparation of Iron Phosphate. Journal of Sustainable Metallurgy, 11(2), 1571–1586. https://doi.org/10.1007/s40831-025-01067-6
Fan, Q., Yuan, S., Wen, J., & He, J. (2024). Review on comprehensive utilization of nickel laterite ore. Minerals Engineering, 218, 109044. https://doi.org/10.1016/j.mineng.2024.109044
Gao, Y., Jin, X., Gao, Y., Rohani, S., He, M., Li, J., Ren, S., Liu, Q., & Liu, W. (2022). Separation of Nickel and Magnesium from Laterite Ore for Simultaneous Co2 Mineralization and Nickel Recovery by Using Waste Copperas. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4012744
Guimarães, A. S., Resende, G. P. de S., Santos, I. D. dos, & Mansur, M. B. (2024). Development of a conceptual direct solvent extraction (DSX) route and a flowsheet to produce purified concentrated cobalt and nickel solutions representing sulfuric acid leach liquor of laterite. Hydrometallurgy, 227, 106321. https://doi.org/10.1016/j.hydromet.2024.106321
Hai-kuo, F., Ya-qin, W., Yu-xing, M., Yi, Z., & Cai-feng, Z. (2013). Research Progress on Comprehensive Utilization of Magnesium from Leaching Liquor of Nickel Laterite Ore in Hydrometallurgical Process. In Multipurpose Utilization of Mineral Resources.
Hariyanto, R. K. S., Tomas da Rocha, L., Kim, S.-J., & Jung, S.-M. (2023). Influence of Alkali Salts on Extraction of Nickel From Serpentine-Rich Ore Through Sulfation Roasting Leaching Process. Journal of Sustainable Metallurgy, 9(4), 1636–1646. https://doi.org/10.1007/s40831-023-00753-7
Ikhwani, N., Harjanto, S., Kawigraha, A., Andrameda, Y. A., & Permatasari, N. V. (2023). Laterite nickel hydrometallurgical residues characterization and potential utilization of valuable elements. In AIP Conference Proceedings 2828 (1), 2023.
Jian-ming, P., Pei-min, G., & Pei, Z. (2011). Analysis on Pyrometallurgy Technologies of Laterite-Nickel Ore. In JOURNAL OF IRON AND STEEL RESEARCH.
Keskinkilic, E. (2019). Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route. Metals, 9(9), 974. https://doi.org/10.3390/met9090974
Kolmachikhina, O. B., Polygalov, S. E., & Vakula, K. A. (2021). The Study of Physicochemical Features of Laterite Ores of the Buruktalsky Deposit. Solid State Phenomena, 316, 694–698. https://doi.org/10.4028/www.scientific.net/ssp.316.694
Kursunoglu, S., & Kaya, M. (2019). Hydrometallurgical processing of nickel laterites-a brief overview on the use of solvent extraction and nickel/cobalt project for the separation and purification of nickel and …. In Scientific Mining Journal 58 (2), 131-144, 2019.
LI, J., LI, Y., ZHENG, S., XIONG, D., CHEN, H., & ZHANG, Y. (2015). Research review of laterite nickel ore metallurgy. In Nonferrous Metals Science and Engineering.
Li, X. H., Tuo, B. Y., Zhang, Q., & Zhang, S. J. (2014). Experimental Study on Recovery of Nickel from Nickel-Bearing Laterite. Advanced Materials Research, 881–883, 1611–1615. https://doi.org/10.4028/www.scientific.net/amr.881-883.1611
Li, Z., Tian, Q., Wang, Q., Zulhan, Z., Wang, S., Hidayat, T., & Guo, X. (2025). Preparation of Nickel Matte from Laterite Nickel Ore Using Pyrite as the Sulfurization Agent. Metallurgical and Materials Transactions B, 56(5), 4964–4976. https://doi.org/10.1007/s11663-025-03607-7
Liu, W., Liu, S., Ling, H., Li, C., & Jiao, F. (2025). Production of nickel matte from saprolitic laterite ore by sulfide smelting with pyrite. Minerals Engineering, 233, 109658. https://doi.org/10.1016/j.mineng.2025.109658
Muhammad, A. J., Nakagawa, K., Karya, I. P. A., Ndita, A., Darusman, L. O. M., Iwamoto, T., Terui, Y., Agusu, L., Sudiana, I. N., Nishimura, F., Nishiumi, T., Asano, T., Kikuchi, H., & Mitsudo, S. (2025). Microwave-Assisted Roasting-Leaching of Nickel from Indonesian Nickel Laterite Ore. International Journal of Acta Material, 1(2), 73–83. https://doi.org/10.62749/ijactmat.v1i2.10
Mystrioti, C., Papassiopi, N., Xenidis, A., & Komnitsas, K. (2018). Counter-Current Leaching of Low-Grade Laterites with Hydrochloric Acid and Proposed Purification Options of Pregnant Solution. Minerals, 8(12), 599. https://doi.org/10.3390/min8120599
Peng, Z. (2011). The Latest and Future Development of Laterite Nickel Ore Processing Technology. In Rare Metals and Cemented Carbides.
Pickles, C. A., & Anthony, W. (2018). Thermodynamic modelling of the reduction of a saprolitic laterite ore by methane. Minerals Engineering, 120, 47–59. https://doi.org/10.1016/j.mineng.2018.02.006
Pinegar, H., & Smith, Y. R. (2020). Recycling of End-of-Life Lithium-Ion Batteries, Part II: Laboratory-Scale Research Developments in Mechanical, Thermal, and Leaching Treatments. Journal of Sustainable Metallurgy, 6(1), 142–160. https://doi.org/10.1007/s40831-020-00265-8
Ribeiro, P. P. M., Neumann, R., Santos, I. D. dos, Rezende, M. C., Radino-Rouse, P., & Dutra, A. J. B. (2019). Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process. Minerals Engineering, 131, 90–97. https://doi.org/10.1016/j.mineng.2018.10.022
Rizky, M. A., Sukamto, U., & Setiawan, A. (2023). Literature Review: Comparison of Caron Process and RKEF On The Processing of Nickel Laterite Ore For Battery. Jurnal Mineral, Energi, Dan Lingkungan, 6(2), 47. https://doi.org/10.31315/jmel.v6i2.6900
Rosenberg, S., Kurz, L., Huster, S., Wehrstein, S., Kiemel, S., Schultmann, F., Reichert, F., Wörner, R., & Glöser-Chahoud, S. (2023). Combining dynamic material flow analysis and life cycle assessment to evaluate environmental benefits of recycling – A case study for direct and hydrometallurgical closed-loop recycling of electric vehicle battery systems. Resources, Conservation and Recycling, 198, 107145. https://doi.org/10.1016/j.resconrec.2023.107145
Sari, Y., Manaf, A., Astuti, W., Haryono, T., Nurjaman, F., & Bahfie, F. (2024). Recovery of ferronickel by green selective reduction of nickel laterite. IOP Conference Series: Earth and Environmental Science, 1388(1), 012026. https://doi.org/10.1088/1755-1315/1388/1/012026
Stanković, S., Stopić, S., Sokić, M., Marković, B., & Friedrich, B. (2020). Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering, 26(2), 199–208. https://doi.org/10.30544/513
Stopić, S., R., & Friedrich, B., G. (2020). Recovery of cobalt from primary and secondary materials: An overiew. Vojnotehnicki Glasnik, 68(2), 321–337. https://doi.org/10.5937/vojtehg68-26117
Tang, X., Liu, R., Yao, L., Ji, Z., Zhang, Y., & Li, S. (2014). Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore. International Journal of Minerals, Metallurgy, and Materials, 21(10), 955–961. https://doi.org/10.1007/s12613-014-0995-5
Wang, Z., Chu, M., Liu, Z., Wang, H., Zhao, W., & Gao, L. (2017). Preparing Ferro-Nickel Alloy from Low-Grade Laterite Nickel Ore Based on Metallized Reduction–Magnetic Separation. Metals, 7(8), 313. https://doi.org/10.3390/met7080313
Wei, J. M., Wang, W. W., Ma, M. S., Sun, N. L., Qin, B., Li, M. C., Du, G. S., Lv, D., Liu, G., Peng, J. H., Lu, Y. D., & Liu, C. (2024). Recovery of Scandium, Nickel and Cobalt from Hydrometallurgical Waste of Laterite. Journal of Physics: Conference Series, 2686(1), 012004. https://doi.org/10.1088/1742-6596/2686/1/012004
Wei, L., Hui, W., Jian-gang, F., & Zhang-xing, H. (2011). High Recovery of Ferro-Nickel from Low Grade Nickel Laterite Ore. In Journal of Central South University.
Xiong, X., Ma, B., Li, X., Yu, J., Shi, L., Wang, C., & Chen, Y. (2024). Hydrometallurgical process and recovery of valuable elements for limonitic laterite: A review. Chinese Journal of Chemical Engineering, 73, 189–201. https://doi.org/10.1016/j.cjche.2024.05.011
Ya-guang, G., Rong, Z., Ming, L., Ming-wei, G., Yong-wei, W., & Chun-fang, Z. (2014). Extraction of a nickel-iron alloy from nickel laterite ore through selective reduction and smelting process. In Journal of University of Science and Technology Beijing.





